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Abstract
We study the phase behaviour of a fluid composed of particles which interact via a pair potential
that is repulsive for large inter-particle distances, is attractive at intermediate distances and is
strongly repulsive at short distances (the particles have a hard core). As well as exhibiting
gas–liquid phase separation, this system also exhibits phase transitions from the uniform fluid
phases to modulated inhomogeneous fluid phases. Starting from a microscopic density
functional theory, we develop an order parameter theory for the phase transition in order to
examine in detail the phase behaviour. The amplitude of the density modulations is the order
parameter in our theory. The theory predicts that the phase transition from the uniform to the
modulated fluid phase can be either first order or second order (continuous). The phase diagram
exhibits two tricritical points, joined to each other by the line of second order transitions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The interactions between colloidal particles can be complex
and varied. In order to understand and determine the
interactions one must not only consider the direct or ‘bare’
interactions between the colloids themselves, but also the
influence of the medium in which they are dispersed (the
solvent). For example, if the colloids carry a net charge q ,
they will tend to repel each other. However, the strength of this
repulsive interaction is determined not only by the magnitude
of the charge q , but also by the concentration and types of
counterions in the solvent. The counterions may condense
on the surface of the colloids, forming an oppositely charged
double layer around the colloids, which screens the Coulomb
interaction. Thus the range and strength of this repulsive
interaction may be determined by controlling the concentration
and type of coions and counterions in the solvent [1, 2].

The interaction between the colloids may also be
influenced by the presence of other species in the solvent, such
as polymeric macromolecules. If these polymers adhere to the
surface of the colloids they form a soft layer surrounding the
particles thus effectively increasing their size. Such adsorbing
polymers may be used to stabilize the colloids in suspension.

On the other hand, non-adsorbing polymers have the effect
of generating an effective attraction between the colloids.
This depletion interaction arises due to the fact that when
the separation between two colloids becomes less than ∼2Rg,
where Rg is the polymer radius of gyration, then the polymer
chains are unlikely to be found between the two colloids since
such confinement entails an entropic cost. This depletion
results in an unbalanced osmotic pressure on the colloids by the
polymers, generating an effective attraction between the pair of
colloids [1, 2].

In the last few years there have been a number of
studies of systems of charged colloidal particles dispersed
in a solvent containing non-adsorbing polymers [3–6]. Due
to that fact that in these systems the charge is only weakly
screened, there is a competition between a short ranged
(depletion) attraction due to the presence of the polymers
in the solution and a longer ranged (screened Coulomb)
repulsive interaction. The competing interactions give rise
to microphase separated fluid phases—i.e. to fluid states
exhibiting equilibrium modulated structures such as clusters or
stripes. Other mechanisms leading to this kind of competition
are also possible. For instance, the attraction may be due
to dispersion forces instead of osmotic depletion. Even
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with neutral particles interacting solely via depletion forces,
competition may arise as a consequence of mutual interactions
between the depletants, which modify the interaction potential
with respect to the simplest Asakura–Oosawa picture [1, 7].
Structuring and pattern formation has also been seen in two
dimensional systems [8, 9], where the repulsion is likely to be
due to dipole–dipole interactions between the particles at the
surface. Together with these experimental studies, there has
been significant theoretical interest in model colloidal systems
exhibiting such competing interactions [10–32]. An overview
of the results and conclusions drawn from this body of work is
given in [13], and will not be repeated here.

A simple model for these colloidal systems was
considered by some of us previously [10–13]. We model
the ‘bare’ interaction between the colloids as a hard-sphere
interaction, the long ranged screened Coulomb repulsion with
a Yukawa potential and we model the depletion attraction using
an additional Yukawa potential. Thus the pair potential in our
model is as follows:

v(r) = vhs(r) + w(r) (1)

where vhs(r) is the hard-sphere pair potential:

vhs(r) =
{

∞ r � σ

0 r > σ ,
(2)

where σ is the hard-sphere diameter and

w(r) = −εσ
e−λ1( r

σ
−1)

r
+ Aσ

e−λ2( r
σ
−1)

r
. (3)

The first term in w(r) is the (attractive) depletion interaction
and the second term is the (repulsive) screened Coulomb
interaction. The magnitudes of the parameters ε and A are
determined by the concentration of non-adsorbing polymers in
the solution and the charge carried by the colloids, respectively.
The parameter λ1 ∼ σ/Rg is roughly the size ratio between the
colloids and the polymers and the parameter λ2 is determined
by the concentration and type of screening ions in the solvent.
In the present work we consider the case when λ1 > λ2, so that
the pair potential v(r) is repulsive for large r [33]4. However,
at intermediate distances r > σ between the particles, v(r)

may be attractive—i.e. v(σ+) < 0. This occurs when the
parameter ε > A. In this case there is a competition between
the long range repulsion and the shorter ranged attraction.
Depending on the values of the set of pair potential parameters
{ε, A, λ1, λ2}, the fluid temperature T and number density ρ,
this model may exhibit various modulated phases [12, 13].

The precise nature of the phase transition from the
uniform fluid phase to the modulated fluid phases is not
well understood. In [12] some of us developed a density
functional theory (DFT) [34, 35] for the present model. It
was found that the DFT provided a good account of the
structure and thermodynamics of the uniform liquid. The
theory also predicts that for certain choices of the parameters
{ε, A, λ1, λ2} and the temperature T , there exists an interval

4 See for example [33] and references therein for a discussion of the fluid
properties in the opposite limit (λ1 < λ2).

of the fluid density ρ where the uniform fluid becomes
unstable against periodic density fluctuations of a certain
wavelength, indicating that there must be a phase transition to
an inhomogeneous (modulated) phase. The locus of this line in
the phase diagram is called the λ-line [12, 36–39].

Following the study in [12], a further study was made
using Monte Carlo (MC) computer simulations and integral
equation theories [13], in order to determine the nature of phase
transition occurring at the λ-line. The results from the integral
equation theories were mostly inconclusive—all the closure
relations that were implemented either failed to describe the
phase transition or had no solution in the region of the phase
diagram where the inhomogeneous phases are expected, with
the exception of the Percus–Yevick (PY) closure, which is able
to describe to some extent the nature of the transition from
the low density homogeneous phase to the modulated (cluster)
phase. However, this theory also failed to have a solution at
higher densities.

The picture that emerged from the MC simulations was
that for certain values of A and ε−1 there is a first order
phase transition from a low density homogeneous phase to a
modulated (cluster) phase and also at higher densities a first
order phase transition from a modulated (bubble) phase to the
uniform liquid [13]. It was found that there is a difference in
the densities �ρ between these coexisting phases. However,
�ρ was found to be a fairly small quantity, which means that
the density ρ is not a good order parameter for this phase
transition. We show below that the amplitude of the density
modulations A proves to be a better order parameter for this
phase transition. On following either of these two first order
transitions to larger values of ε−1, one finds that �ρ → 0.
The two critical points, at which these two transitions cease to
be first order (i.e. when �ρ = 0) are difficult to locate using
MC simulations [13]. One reason for this was due to a lack
of knowledge of the relevant order parameter for the phase
transition. Based on a comparison with the phase behaviour
of lattice models with competing interactions [13, 40], it was
concluded that the two critical points were most likely to be
tricritical points [41], connected to each other by a line of
second order (continuous) transitions. However, it was not
possible to see any signature of the second order transition
line in the MC simulation results, leaving the conclusions
somewhat tentative.

In the present work we use DFT to examine the phase
behaviour in the vicinity of the λ-line and we find that the
theory confirms the scenario proposed in [13]—i.e. that the
critical points are indeed tricritical points and that connecting
these is the λ-line itself—a line of second order transitions.
We also use the DFT to develop an order parameter (Landau)
theory for the phase transition, by making a sinusoidal
approximation for the density modulations and then expanding
the free energy in powers of the order parameter A, allowing
us to investigate the transition in detail. We also confirm
our results numerically, solving the full DFT for the density
profiles.

This paper proceeds as follows. In section 2 we describe
the simple mean-field DFT that we use to study the phase
transitions. In section 3 we determine structural properties
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predicted for the uniform fluid phase, focusing in particular
on the static structure factor. We find a simple expression
for the wavenumber at which the static structure factor has
a peak, corresponding to the typical length scale of the fluid
modulations. In section 4, starting from our DFT we develop
an order parameter theory for the phase transitions in this
system, by expanding the free energy in powers of A. From our
approximate free energy we determine the phase diagram of the
system for particular choices of the pair potential parameters.
In section 5 we determine the phase behaviour by solving the
full DFT, showing that our simplified order parameter theory
captures most of the important physics. Finally, in section 6
we draw our conclusions.

2. Mean-field DFT for the model

For systems of particles interacting via potentials of the form in
equation (1), a common approach is to split the Helmholtz free
energy into a contribution from the hard-sphere interactions
between the particles—the ‘reference’ part—and a separate
part due to the slowly varying tail of the potential w(r) [35].
Taking this approach, in [12], the following approximation for
the intrinsic Helmholtz free energy functional for the system
was proposed:

F[ρ(r)] = FRos
hs [ρ(r)]

+ 1
2

∫
dr
∫

dr′ρ(r)ρ(r′)w(r − r′) (4)

where FRos
hs [ρ(r)] is the Rosenfeld approximation [42–44] for

the hard-sphere contribution to free energy. The Rosenfeld
functional is a non-local weighted-density functional, which
also includes the exact ideal-gas contribution to the free energy.
The remaining part is a simple mean-field approximation for
the contribution to the free energy from the longer ranged
interactions between the particles.

Note that in the mean-field contribution to the free
energy (4) (or (7)), one requires the value of the potential
w(r) for all values of r . However, given the hard-sphere
contribution to the pair potential, equations (1)–(3), the value
of w(r) for 0 < r < σ should be irrelevant. Thus, the value
of w(r) for 0 < r < σ used in the mean-field contribution to
equation (4), is effectively a free parameter in the theory. In
[12] it was found that the choice w(r) = w(σ+) = −ε + A,
for 0 < r < σ gave better agreement with the self-consistent
Ornstein–Zernike approximation (SCOZA) for the fluid phase,
than extending down to 0 < r < σ the double Yukawa form
of w(r) that is used for r > σ . In the present study we
use the truncated potential w(r) = w(σ+) = −ε + A, for
0 < r < σ for all the DFT calculations. However, in sections 3
and 4 we do not truncate w(r) in order to simplify the analytic
calculations.

The equilibrium one-body density profile ρ(r) is
determined by minimizing the Grand potential functional

�[ρ] = F[ρ] −
∫

dr ρ(r)[μ − Vext(r)], (5)

where μ is the chemical potential and Vext(r) is the external
potential. The equilibrium density profile is the solution to the

Euler–Lagrange equation

δ�[ρ]
δρ(r)

= 0. (6)

If one requires the theory to be able to describe the oscilla-
tory (with wavelength ∼σ ) density profiles that occur when
the fluid is subject to an external potential that varies strongly
over short distances (such as, for example, the external poten-
tial due to the wall of the fluid container), then one must use a
weighted-density DFT such as the Rosenfeld theory. However,
if one is more interested in the large scale structures (stripes,
clusters etc) that arise in the present system, due to the com-
peting interactions in w(r), then one may simplify the above
theory, by making a local density approximation (LDA) in the
reference hard-sphere functional. In this case one may assume
that the intrinsic Helmholtz free energy functional of the sys-
tem is given by the following mean-field approximation:

F[ρ(r)] =
∫

dr ρ(r) f (ρ(r))

+ 1
2

∫
dr
∫

dr′ρ(r)ρ(r′)w(r − r′) (7)

where f (ρ) is the Helmholtz free energy per particle of a uni-
form fluid of hard-spheres with bulk density ρ. We use the
Carnahan–Starling approximation [35]:

β f (ρ) = ln(η) + η(4 − 3η)

(1 − η)2
, (8)

where η = πρσ 3/6 is the packing fraction and β = 1/kBT
is the inverse temperature, which we will henceforth set to be
β = 1. From equations (6)–(8) we obtain the following Euler–
Lagrange equation for the equilibrium density profile:

f (ρ(r))+ρ(r) f ′(ρ(r))+
∫

dr′ρ(r′)w(r−r′)+ Vext(r) = μ.

(9)
The free energy of the uniform bulk fluid may be

obtained by setting the density profile ρ(r) = ρ, i.e. a
constant, in either of equations (4) or (7). The resulting free
energies differ slightly between the two functionals, since for a
uniform fluid the hard-sphere contribution from the Rosenfeld
functional (4) is equivalent to that from the scaled particle
(PY compressibility) equation of state [35], whereas the hard-
sphere contribution to the free energy from (7) and (8) is that
from the Carnahan–Starling equation of state. However, for the
densities of interest here, the difference between the two free
energies is small.

In figure 1, we display the uniform vapour–liquid
coexistence curve (binodal), the spinodal and the λ-line, for
the set of pair potential parameters: λ1 = 1, λ2 = 0.5 and
A = 0.5. Here, as in [12, 13], the phase diagram has been
mapped by changing the attraction strength ε at fixed repulsion
strength A. This can be achieved in a solution of charged
colloidal particles by changing the depletant concentration at
fixed temperature and salt concentration. This choice implies
that the region of ε values where competition is important
and microphase formation is expected has both a lower and
an upper bound: at low ε, the interaction will be mostly or
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Figure 1. Phase diagram in the ε−1 versus density ρ plane obtained
from the LDA DFT (7) for the set of pair potential parameters
λ1 = 1, λ2 = 0.5 and A = 0.5. Within the region enclosed by the
λ-line the uniform fluid is unstable against periodic density
fluctuations with wavevector k = kc �= 0. The liquid–vapour
coexistence curve (the binodal) and the spinodal are obtained from
the same free energy functional for the uniform fluid.

entirely repulsive, the λ-line is not met, and no transition will
take place, except for those involving the occurrence of solid
phases. At high ε, the interaction will be mostly attractive,
and bulk liquid–vapour phase separation will take over. This is
shown in figure 1, where the liquid–vapour binodal moves out
of the region bounded by the λ-line for values of ε−1 � 0.55.

In order to demonstrate the reliability of the LDA DFT
versus the more sophisticated Rosenfeld DFT, we calculate
the fluid density profiles for the fluid confined between two
parallel planar hard walls separated a distance L = 120σ ,
where Vext(r) = Vext(z) = 0 for 0 < z < L and Vext(z) = ∞
otherwise. The external potential varies only in the Cartesian
z-direction, and we assume that the fluid density profile also
only varies in the z-direction, so that the Euler–Lagrange
equation (9) becomes

μ = f (ρ(z)) + ρ(z) f ′(ρ(z))

+
∫

dz′ρ(z′)φ(z − z′) + Vext(z), (10)

where φ(z) = ∫
dx
∫

dy w(r). We solve this equation for
the equilibrium density profile ρ(z) by discretizing the density
profile and using a simple iterative numerical procedure. In
figure 2 we display results for the case when the pair potential
parameters are chosen to be ε−1 = 0.65, A = 0.5, λ1 = 1,
λ2 = 0.5 and the chemical potential is chosen so that the
average fluid density in the slit is ρ̄σ 3 = 0.25. As one can see
from figure 1 this corresponds to a state point that is well inside
the λ-line, where the fluid is strongly modulated. Comparing
the two density profiles displayed in figure 2, we see that they
are are fairly similar. The main difference occurs for values
of z that are close to the confining walls. The Rosenfeld
functional, which gives a better account of the hard-sphere
correlations, predicts that the fluid profile contains oscillations
with wavelength ∼σ in the vicinity of the wall, due to packing
of the spheres at the wall. However, the density profile
obtained from LDA functional (7) does not have these small

Figure 2. In the upper figure we display the density profile for the
fluid confined between two parallel hard walls, separated a distance
L = 120σ , in the case when the pair potential parameters are
ε−1 = 0.65, A = 0.5, λ1 = 1, λ2 = 0.5 and the average fluid density
is ρ̄σ 3 = 0.25. In the lower figure, we display a magnification of the
left-hand portion of the density profile. The solid (red) line is the
density profile calculated using the LDA reference hard-sphere
functional, equation (7). The dashed (black) line is the result
obtained using the Rosenfeld functional for the hard-sphere reference
functional.

length scale modulations and only exhibits the larger length
scale modulations that arise due to the competing interactions
in w(r).

3. Structure of the uniform fluid

From previous studies of the present model fluid [10–13, 16,
19, 21–27], we know that the static structure factor S(k) plays
an important role in characterizing the microphase structuring
displayed by the system. One finds that there is a large peak in
S(k) at k = kc � 2π/σ , where lc ≡ 2π/kc is the length scale
associated with the density modulations in the system. S(k) is
given by the following expression

S(k) = 1

1 − ρĉ(k)
, (11)

where ĉ(k) is the Fourier transform of c(r), the bulk fluid
(Ornstein–Zernike) direct pair correlation function [35]. This
function may be obtained from the free energy functional via
the following relation [34, 35]:

c(r, r′) = −β
δ2(F[ρ(r)] − Fid[ρ(r)])

δρ(r)δρ(r′)
, (12)

where

Fid[ρ(r)] = kBT
∫

dr ρ(r)[ln(
3ρ(r)) − 1] (13)

is the ideal-gas contribution to the free energy; 
 being the
thermal wavelength. For the homogeneous bulk fluid where
ρ(r) = ρ, we find c(r, r′) = c(|r − r′|) = c(r). From
equations (7) and (12) we obtain the following approximation
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for the pair direct correlation function

c(r, r′) = −β

[
2 f ′(ρ(r)) + ρ(r) f ′′(ρ(r)) − kBT

ρ(r)

]
× δ(r − r′) − βw(r − r′), (14)

where f ′ and f ′′ are the first and second derivatives of f with
respect to ρ and δ(r) is the Dirac delta function. Thus the
Fourier transform of this quantity evaluated for the bulk fluid
is

ĉ(k) = −β

[
2 f ′(ρ) + ρ f ′′(ρ) − kBT

ρ

]
− βŵ(k), (15)

where ŵ(k) is the Fourier transform of w(r) and the first term
in the right-hand side is equal to −1/(ρχ red

hs )+1/ρ, χ red
hs being

the isothermal compressibility of the hard-sphere fluid divided
by that of the ideal gas. This treatment amounts to taking the
expression

ĉ(k) = ĉhs(k) − βŵ(k) (16)

given by the random phase approximation (RPA) and setting
k = 0 in ĉhs(k), the Fourier transform of the hard-sphere
direct pair correlation function. In [12] the uniform phase was
studied by the full RPA, which is obtained from the free energy
functional (4) adopted there in the homogeneous regime. If
we define the following parameters: ε1 = ε exp(λ1) and
ε2 = A exp(λ2), then we may rewrite the pair potential w(r)

as follows:

w(r) = −ε1
exp[−λ1(r/σ)]

r/σ
+ ε2

exp[−λ2(r/σ)]
r/σ

. (17)

From this we obtain:

ŵ(k) = − 4πε1σ
3

(λ2
1 + k2σ 2)

+ 4πε2σ
3

(λ2
2 + k2σ 2)

. (18)

Thus the static structure factor is given by

S(k) = 1

ρβ[2 f ′(ρ) + ρ f ′′(ρ) + ŵ(k)] (19)

≡ 1

D(k)
, (20)

which defines the denominator function D(k). For the sets of
parameters {λ1, λ2, ε1, ε2} that we consider here, the structure
factor given by equation (19) exhibits a single peak, at k = kc.
This is the peak that characterizes the cluster/stripe modulated
structures in the system. This approximation for S(k) becomes
unreliable for large wavenumbers k 	 kc, as one should
expect, given the delta-function approximation for the hard-
sphere contribution to c(r), in equation (14).

One finds that in a certain portion of the phase diagram,
the uniform fluid is unstable with respect to periodic density
fluctuations—this occurs when S(k) → ∞ at k = kc. In
other words, when D(k = kc) → 0. The locus in the phase
diagram at which D(k = kc) = 0 is the λ-line [12]. In
figure 1, we display the λ-line for the set of pair potential
parameters: λ1 = 1, λ2 = 0.5 and A = 0.5. We see
that this instability pre-empts the spinodal instability which
corresponds to S(k = 0) → ∞; i.e. when D(k = 0) → 0.

The wavelength of the periodic density modulations is
lc ≡ 2π/kc; this length scale is the typical distance from

the peak of one density modulation to the next. Within the
present theory, we are able to obtain a simple expression for
kc, as a function of the pair potential parameters. To do this
we recall that kc is the value of k for which S(k) is maximum.
This maximum in S(k) corresponds to a minimum in D(k),
i.e. when

∂ D(k)

∂k
= 0. (21)

Given that within our approximation for D(k), equations (19)
and (20), the only k-dependence in D(k) enters in the function
ŵ(k), we find that this condition simplifies to the following:

∂ŵ(k)

∂k
= 8πε1σ

5k

(λ2
1 + k2σ 2)2

− 8πε2σ
5k

(λ2
2 + k2σ 2)2

= 0. (22)

There are two solutions to equation (22). The first is k = 0.
This corresponds to a maximum in D(k) and a minimum in
S(k). The second solution to equation (22) is k = kc, where

kc = 1

σ

√
λ2

1 − αλ2
2

α − 1
, (23)

and where α = √
ε1/ε2. Note that this expression for

kc does not depend of the fluid density ρ, indicating that
the wavelength of the density modulations is independent of
the fluid density. However, the amplitude of any density
modulations does depend on the fluid density, since this
quantity depends upon the height of the maximum in S(k),
which does depend on the density ρ.

We are now in the position to obtain a relatively simple
expression for the value of ε1 on the λ-line, as a function of
density and the other pair potential parameters. Recall that
the λ-line corresponds to the line in the phase diagram where
D(k = kc) = 0 [12]. From equations (19) and (20) we see that
this condition is equivalent to the condition

2 f ′(ρ) + ρ f ′′(ρ) + ŵ(kc) = 0. (24)

Using our expression for kc in equation (23), we obtain:

ŵ(kc) = −4πσ 3ε2(α − 1)2

λ2
1 − λ2

2

. (25)

Equations (24) and (25) may be solved in a straightforward
manner, by fixing the value of the density ρ and then solving
equation (24) for ε1, to obtain:

ε1 = ε2

⎛
⎝1 +

√
(λ2

1 − λ2
2)(2 f ′(ρ) + ρ f ′′(ρ))

4πσ 3ε2

⎞
⎠

2

. (26)

This gives the value of ε1 on the λ-line, as a function of the
fluid density, ρ.

In the lower panel of figure 3 we compare the result for the
λ-line in equation (26) with the result obtained from the RPA,
equations (11) and (16). Recall that equation (26) is obtained
by taking the RPA expression for the pair direct correlation
function, equation (16), and setting k = 0 in ĉhs(k). In the
upper panel of figure 3 we display the value of kc calculated
along the λ-line, obtained from equation (23) (solid line) and

5
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Figure 3. In the upper figure we display kc, the wavenumber for the
maximum in S(k), calculated along the λ-line, for the case when
A = 0.5, λ1 = 1 and λ2 = 0.5. The solid line is the result in
equation (23) and the dashed line is the result from the RPA. Below
this we display the λ-line. The solid line is the result in equation (26)
and the dashed line is the result from solving the RPA.

also the result from the RPA, equations (11) and (16), (dashed
line). We see fairly good agreement between the two sets
of results, providing further confirmation that the LDA free
energy functional (7) is able to account for the correlations in
the fluid in the portion of the phase diagram in the vicinity of
the λ-line.

4. Order parameter theory

In this section, starting from the DFT proposed in section 2, we
develop an order parameter theory for the phase transition from
the uniform fluid to the modulated fluid phase. To develop the
theory, we make the following assumptions: (i) we assume that
the density profile varies only in one spatial direction, i.e. we
assume ρ(r) → ρ(z). (ii) We assume the density modulations
δρ(z) are of the form

ρ(z) = ρ̄ + δρ(z)

= ρ̄ + A sin(kz), (27)

where ρ̄ is the average fluid density and the amplitude A is
the order parameter for the transition. We should expect the
wavenumber for the modulations in equation (27) to be k = kc.
However, for the present we will not make any assumptions
concerning the precise value of k in equation (27), other than
to assume it is finite and non-zero.

From our assumption that the density profile varies in only
one Cartesian direction we may rewrite the Helmholtz free
energy (7) as follows:

F[ρ(z)] = L2
∫

dz ρ(z) f (ρ(z))

+ L2

2

∫
dz
∫

dz′ρ(z)ρ(z′)φ(z − z′) (28)

where the limits on the integrals go from −L/2 to L/2 (we
implicitly take the thermodynamic limit L → ∞), L2 =

∫
dx
∫

dy is the system cross sectional area and

φ(z) =
∫

dx
∫

dy w(r)

= −2πσ 2ε1

λ1
e−λ1z/σ + 2πσ 2ε2

λ2
e−λ2z/σ (29)

where we have used equation (17) to obtain the second line in
equation (29).

Substituting equation (27) into (28) and making a Taylor
expansion in the LDA hard-sphere part of the free energy, we
obtain:

F[ρ] = L2
∫

dz

{
ρ̄ f (ρ̄) + 1

2

∂2(ρ f )

∂ρ2

∣∣∣∣∣
ρ̄

δρ2

+ 1

4!
∂4(ρ f )

∂ρ4

∣∣∣∣∣
ρ̄

δρ4 + 1

2
ρ̄2ŵ(0) + 1

2
ŵ(k)δρ2

+ O(δρ6)

}
(30)

= F[ρ̄] +
{

∂2(ρ f )

∂ρ2

∣∣∣∣∣
ρ̄

+ ŵ(k)

}
L2

2

∫
dz δρ2

+ ∂4(ρ f )

∂ρ4

∣∣∣∣∣
ρ̄

L2

4!
∫

dz δρ4 + O
(∫

dz δρ6

)
(31)

where we have used the fact that all terms which involve an
integral over an odd power of δρ are zero, due to the fact that
δρ is a sinusoidal function of z. If we now assume that the
system size L = πm/k, where m is an integer, then we obtain:

βF[ρ]
V

= βF[ρ̄]
V

+ D(k)

4ρ̄
A2 + B

64
A4 + O(A6) (32)

where V = L3 is the system volume,

βF[ρ̄]
V

= ρ̄ f (ρ̄) + 1

2
ρ̄2ŵ(0) (33)

is the free energy of the uniform fluid and B =
β[∂4(ρ f )/∂ρ4]ρ̄ = β(4 f ′′′(ρ̄) + ρ̄ f ′′′′(ρ̄)). The higher order
terms in the expansion (32) are fairly straightforward to obtain,
since they are merely terms arising from the Taylor expansion
of the hard-sphere part of the free energy functional. For
example, the next term of order O(A6) in equation (32), is
CA6/6, where C = β[∂6(ρ f )/∂ρ6]ρ̄/384.

We may now use equation (32) to investigate the phase
behaviour in the vicinity of the λ-line. For a given state
point, the equilibrium value of the amplitude A is that which
minimizes the free energy (32)—i.e. the equilibrium value of
the amplitude is the solution to the equation

∂F
∂A = 0, (34)

which together with (32) gives us the following equation to be
solved for A:

D(k)

2ρ̄
A + B

16
A3 + O(A5) = 0. (35)

6
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We first note that the coefficient B > 0 for all densities
0 < ρ̄ < 6/πσ 3 and the same is true for all coefficients of
higher order terms in the expansion. Secondly, we note that
for the uniform fluid, outside the λ-line, D(k) > 0 for all
values of k. Thus, outside the λ-line, the minimum of the free
energy (32) is when A = 0, as one should expect.

On the λ-line itself, D(k) � 0 for all values of k, with
the equality being the case only for k = kc. However, inside
the λ-line, D(kc) < 0. Thus the coefficient of A2 in the free
energy (32) is negative for k = kc, meaning that inside the
λ-line the free energy is lower for some A > 0, than when
A = 0, indicating that the modulated fluid has a lower free
energy than the uniform fluid. If we neglect the terms O(A6)

and higher in the expansion (32), then from equation (35) we
find that the minimum of the free energy is when the amplitude

A =
(

8|D(kc)|
ρ̄B

)1/2

. (36)

Substituting this value of A into equation (32) we obtain

βF
V

= βF[ρ̄]
V

− D(kc)
2

ρ̄2 B
(37)

where we have neglected the contribution from terms of
O(A6) and higher in equation (37). Since we have fairly
simple expressions for all the terms in equation (37) (see
equations (18), (20), (25) and (33)), we now have a simple
expression for the Helmholtz free energy of the modulated
phase.

Before using equations (33) and (37) for the free energy
to examine the nature of the phase transition between the
uniform and modulated fluid phases, we first recall that for
two phases to coexist, the temperature, pressure and chemical
potential in the two phases must be equal. As we show in
the appendix, these conditions correspond geometrically to
making a common tangent construction on the free energy per
particle a(v̄) = F/N plotted as a function of v̄ = V/N =
1/ρ̄, the volume per particle (N is the total number of particles
in the system). In figure 4 we display the free energy a as a
function of v̄ for two different values of ε−1. In figure 4(a) we
display the free energy for the set of pair potential parameters
λ1 = 1, λ2 = 0.5, A = 0.5 and ε−1 = 0.83. This curve is
typical of the case when ε−1 > ε−1

T , where ε−1
T is the value of

ε−1 at the tricritical point. In this case we see that there is no
common tangent construction—i.e. the free energy is a convex
function. Thus the phase transition between the uniform fluid
and the modulated fluid occurs at the λ-line and the transition
is second order. In fact, on increasing the density ρ̄ (decreasing
v̄), we find there are two second order transitions. These two
points are marked by the symbol • in figure 4(a), which are also
two points on the λ-line. The low density tricritical point is at
ε−1 = ε−1

T � 0.75 and the higher density one is at ε−1
T � 0.79.

On decreasing ε−1 below ε−1
T , one finds that the free

energy is no longer convex and that the common tangent
construction between the uniform fluid free energy and
modulated fluid free energy can be made—see for example the
results for ε−1 = 0.72, displayed in figure 4(b). The common
tangent construction lines are the two dotted lines. These lines

Figure 4. The Helmholtz free energy per particle a plotted as a
function of v, the volume per particle, for the set of fluid pair
potential parameters A = 0.5, λ1 = 1 and λ2 = 0.5. The solid line is
the free energy for the uniform fluid, given by equation (33) and the
dashed line is the free energy for the modulated fluid, given by
equation (37). (a) is for the case when ε−1 = 0.83, above the
tricritical point, and (b) is when ε−1 = 0.72, below the tricritical
point. The dotted lines show the common tangent construction
between the coexisting state points, which are marked with the
symbol •. The points on the λ-line, where the two free energies are
equal are marked with the symbol ×.

join coexisting state points which are marked by the symbol
• in figure 4(b) which lie at points either side of the λ-line
(marked ×). The value of ε−1 at which the free energy curve
goes from being convex, to non-convex defines ε−1

T —this is the
tricritical point [41].

In figure 5 we display the phase diagram resulting from
performing the common tangent construction on the free
energy for a range of values of ε−1. We also display the
phase diagram when the pair potential parameter A = 0.1.
In calculating these phase diagrams we included the term of
O(A6) in the free energy, since truncating the expansion of
the free energy in powers of the order parameter A is only
really justified when A is small. Even including the term
of O(A6), one should not expect the theory to be reliable
for determining the coexistence curve between the uniform
fluid and the modulated fluid for ε−1 < ε−1

T , away from
the tricritical point. Owing to this, the phase diagrams in
figure 5 are only qualitatively correct for ε−1 < ε−1

T , where
the truncated theory predicts the free energy of the modulated

7
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Figure 5. Phase diagram in the ε−1 versus density ρ plane, for the
system with pair potential parameters λ1 = 1, λ2 = 0.5 and (in the
top diagram) A = 0.1 or (in the bottom diagram) A = 0.5, obtained
using equation (32) truncated after the term of O(A6).

phase to be lower than it really is. For the case A = 0.5
the theory predicts (incorrectly) that as ε−1 is decreased, the
two first order transition lines never intersect, as they do for
A = 0.1. This is the reason why the theory (incorrectly)
predicts that there is no triple point for the case when A = 0.5.

A final question we wish to address in this section is: How
does the amplitude A grow as a function of distance in the
phase diagram from the λ-line? Let us denote the fluid density
on the λ-line itself, for certain value of ε−1 > ε−1

T , as ρλ.
Recall that D(kc, ρλ) = 0, which means that D(kc) ∼ (ρ̄−ρλ)

near the λ-line. Combining this with equation (36), we find that
inside and near to the λ-line the amplitude

A ∼ (ρ̄ − ρλ)
1/2 (38)

and, of course, outside the λ-line the amplitude A = 0.

5. DFT results

In this section we present results from numerically solving
the full DFT theory (7), by finding the solution to the Euler–
Lagrange equation (10), without resorting to the sinusoidal
approximation that was used to develop the order parameter
theory in the previous section.

Figure 6. Equilibrium density profile inside the modulated phase
region, for ε−1 = 0.65 and ρ̄σ 3 = 0.29. The same choice of the
potential range and strength was made calculating the phase diagram
in figure 7, where we see that this density profile corresponds to a
point well inside the modulated phase region.

To calculate the density profile that minimizes the grand
potential functional for a given point in the phase diagram,
i.e. for given values of ε−1 and chemical potential μ, we
solve the Euler–Lagrange equation (10) using a simple iterative
scheme. To determine the equilibrium density profile for the
bulk system, i.e. when Vext(z) = 0, we solve for the profile
using periodic boundary conditions. Note that in this case a
uniform (constant) density profile ρ(z) = ρ̄ corresponds to
a stationary curve for the functional (7). In order to find the
minimum of the free energy corresponding to an oscillatory
density profile, such as that displayed in figure 6, we must
break the symmetry by using a non-uniform initial guess for
the density profile in our iterative solver. The final density
profile does not depend on the precise form of the initial
guess; we used either a step function or the density profile
from a neighbouring state point as our initial guess in this
study. We also found it useful to fix the value of the density
profile ρ(z) to be ρ̄ at a single point. This was done for the
following reason: if a particular density profile ρ(z), such as
that displayed in figure 6, is the equilibrium density profile,
then so is ρ(z + l), where l is any real number. Thus, any
numerical optimization algorithm will initially descend to a
minimum of the free energy corresponding (say) to the density
profile ρ(z). However, due to numerical errors the gradient
of the free energy landscape will not exactly be zero for this
profile and so the optimization routine will then perform a very
slow walk along the free energy valley, where points along
the bottom of the valley correspond to different values of l.
By fixing the density at a single point, one penalizes such
translations.

A further issue to consider is that since we solve for ρ(z)
on a finite grid of length L with periodic boundary conditions,
this length L must be commensurate with the periodicity of
the modulations in the density profile. Thus we must also
minimize the free energy with respect to variations in L, or,
equivalently, with respect to variations in the spacing between
density grid points.

8
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tricritical point
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Figure 7. Phase diagram in the ε−1 − ρ plane obtained from the RPA
DFT for the parameters λ1 = 1, λ2 = 0.5 and A = 0.5. The shaded
regions are the two phase coexistence regions between the uniform
and modulated fluid phases. They end at the tricritical points, where
the transition ceases to be first order and becomes second order.
Above the tricritical points, the transition line is the λ-line.

Phase coexistence between the uniform fluid and the
modulated fluid phases is determined by calculating the grand
potential � for fixed values of ε−1 (which is equivalent to
fixing the temperature), whilst slowly varying the chemical
potential μ. Recall that two phases coexist if the chemical
potential, pressure (recall � = −PV , where P is the pressure)
and temperatures are equal in the two phases. We display
the resulting phase diagram in figure 7. The shaded region
denotes the two phase coexistence region. This phase diagram
should be compared with the lower phase diagram in figure 5,
which was obtained using the order parameter theory of the
previous section (recall, however, that figure 5 was obtained
using a different expression for w(r) within the hard-sphere
core r < σ , than the DFT used to obtain the results in
figure 7—see the discussion in section 2). The boundaries of
the two phase region lie either side of the λ-line. As the value
of ε−1 is increased these coexistence lines meet at the λ-line.
This meeting point is a tricritical point. Above the tricritical
points, the phase transition is second order and follows the λ-
line exactly.

In figure 8 we display plots of the amplitude as a function
of μ for a number of different values of ε−1. For ε−1 < ε−1

T ,
we see that the amplitude varies discontinuously at the phase
transition, jumping from A = 0 in the uniform phases to a non-
zero value in the modulated phase. However, for ε−1 > ε−1

T we
see that the amplitude changes continuously across the phase
transition. In figure 9 we plot the amplitude squared as a
function of ρ̄ for case when ε−1 = 0.76 > ε−1

T . We see that
when A is small, A2 ∝ (ρ̄ − ρλ), indicating that the result in
equation (38), obtained from the order parameter theory, also
applies to solutions of the full DFT.

6. Discussion and conclusions

In this paper we have used DFT to study systems composed
of particles with competing interactions. This model fluid

Figure 8. Variation of the order parameter, the amplitude A, as a
function of the chemical potential μ, for various values of ε−1. The
curves for ε−1 = 0.75 and 0.76 are both continuous and correspond
to values of ε−1 above the tricritical points. The curves for
ε−1 = 0.66 and 0.69 have discontinuities (marked by the dashed
lines) at the phase transitions and these curves correspond to values
of ε−1 below the tricritical points.

Figure 9. Plot of the amplitude squared A2 versus density ρ̄ for the
parameters A = 0.5 and ε−1 = 0.76. The straight line is the line
A2 = 1.7(ρ̄ − ρλ), where ρλσ

3 = 0.1835.

exhibits phase transitions from the uniform fluid to a modulated
fluid phase. In order to elucidate the precise nature of the phase
behaviour of this system we developed an order parameter
(Landau) theory for the phase transition, using the amplitude
A of the modulations as the order parameter. Both the
full DFT theory and the order parameter theory predict the
following phase behaviour: when the parameter ε−1 < ε−1

T , on
increasing the fluid density one finds that there is a first order
phase transition from the uniform fluid phase to the modulated
phase. At the transition point, there is discontinuous change in
both density ρ̄ and the amplitude A, which jumps from A = 0
to A �= 0 discontinuously. However, when ε−1 > ε−1

T , on
increasing ρ̄ one finds that there is a second order (continuous)
phase transition from the uniform fluid phase to the modulated
phase. At the transition point, which lies on the λ-line, both
density ρ̄ and the amplitude A vary continuously. Both outside
and on the λ-line itself, A = 0. On moving off the λ-line, one

9
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finds that the amplitude A increases in a continuous manner.
The precise form of this increase, for small values of A, is
given by equation (38).

The phase behaviour predicted by the theory in this paper
is in qualitative agreement with the results observed recently in
Monte Carlo computer simulations of the present model [13].
However, one should bear in mind that the present theory is a
mean-field theory. The phase behaviour of the present system
is somewhat analogous to that observed in diblock copolymer
systems [1, 45, 46]. In these systems, the result is that when
fluctuations beyond mean field are taken into account, the
second order transition becomes weakly first order [46]. This
scenario is not supported for the present system by the Monte
Carlo simulations in [13], but it may be the case that for some
choices of parameters not explored in [13], the transition at the
λ-line becomes weakly first order.

We should also remind the reader that in the present study
we have assumed throughout that the density profile varied
only in one spatial dimension. Whilst this is true for any
lamellar phase, one should expect the present system to exhibit
cluster, bubble and perhaps other modulated phases [13]. The
density profile for these phases will vary in more than one
Cartesian direction. We plan to study the phases exhibited
by the present DFT when the theory is not constrained to
exhibiting modulations in only one direction. We expect the
region in phase diagrams 5 and 7 labelled ‘modulated fluid’
to be further subdivided into a number of different modulated
phases, in a manner somewhat analogous to the modulated
phases displayed by a two dimensional fluid with competing
interactions [22, 23].

The technological applications of fluids exhibiting
modulated phases could be significant. For example, in display
technologies or in making masks for micro-lithography. It is
therefore important to understand and control the formation
of the various type of modulated structures exhibited by these
systems. The present study goes some way towards this goal.
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Appendix. Common tangent construction

In this appendix we show that the common tangent
construction on the Helmholtz free energy per particle a =
F/N yields the coexisting state points.

From the free energy we may obtain the following
quantities: (i) the pressure

P =
(

∂F
∂V

)
N,T

= −
(

∂a

∂v̄

)
, (A.1)

where v̄ = V/N = 1/ρ̄ is the volume per particle and (ii) the
chemical potential

μ =
(

∂F
∂ N

)
V,T

= a − v̄

(
∂a

∂v̄

)
. (A.2)

If v̄1 and v̄2 are the coexisting volumes per particle, then the
conditions for mechanical equilibrium P(v̄1) = P(v̄2) and of
chemical equilibrium μ(v̄1) = μ(v̄2) give us

∂a

∂v̄

∣∣∣∣∣
v̄1

= ∂a

∂v̄

∣∣∣∣∣
v̄2

= a(v̄1) − a(v̄2)

v̄1 − v̄2
(A.3)

which geometrically corresponds to the common tangent
construction on a(v̄).
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